4Sum II
Given four lists A, B, C, D of integer values, compute how many tuples (i, j, k, l)
there are such that A[i] + B[j] + C[k] + D[l]
is zero.
To make problem a bit easier, all A, B, C, D have same length of N where 0 ≤ N ≤ 500. All integers are in the range of -228 to 228 - 1 and the result is guaranteed to be at most 231 - 1.
Example:
Input: A = [ 1, 2] B = [-2,-1] C = [-1, 2] D = [ 0, 2] Output: 2 Explanation: The two tuples are: 1. (0, 0, 0, 1) -> A[0] + B[0] + C[0] + D[1] = 1 + (-2) + (-1) + 2 = 0 2. (1, 1, 0, 0) -> A[1] + B[1] + C[0] + D[0] = 2 + (-1) + (-1) + 0 = 0
class Solution {
public:
int fourSumCount(vector<int>& A, vector<int>& B, vector<int>& C, vector<int>& D)
{
unordered_map<int,int> mp;
int n=A.size();
int ans=0,sum;
for(int i=0;i<n;++i)
{
for(int j=0;j<n;++j)
{
sum=A[i]+B[j];
mp[sum]++;
}
}
for(int i=0;i<n;++i)
{
for(int j=0;j<n;++j)
{
sum=-(C[i]+D[j]);
if(mp.find(sum)!=mp.end())
ans+=mp[sum];
}
}
return ans;
}
};
hERE IS JAVA SOLUTION
public int fourSumCount(int[] A, int[] B, int[] C, int[] D) {
Map<Integer, Integer> map = new HashMap<>();
for(int i=0; i<C.length; i++) {
for(int j=0; j<D.length; j++) {
int sum = C[i] + D[j];
map.put(sum, map.getOrDefault(sum, 0) + 1);
}
}
int res=0;
for(int i=0; i<A.length; i++) {
for(int j=0; j<B.length; j++) {
res += map.getOrDefault(-1 * (A[i]+B[j]), 0);
}
}
return res;
}
Time complexity: O(n^2)
Space complexity: O(n^2)
HERE IS PAYTHON SOLUTION:
def fourSumCount(self, A, B, C, D):
AB = collections.Counter(a+b for a in A for b in B)
return sum(AB[-c-d] for c in C for d in D)