Partition Equal Subset Sum Solution - Codeprg

Breaking

programing News Travel Computer Engineering Science Blogging Earning

Friday, 27 November 2020

Partition Equal Subset Sum Solution

 Partition Equal Subset Sum  Solution



Given a non-empty array nums containing only positive integers, find if the array can be partitioned into two subsets such that the sum of elements in both subsets is equal.

 

Example 1:

Input: nums = [1,5,11,5]
Output: true
Explanation: The array can be partitioned as [1, 5, 5] and [11].

Example 2:

Input: nums = [1,2,3,5]
Output: false
Explanation: The array cannot be partitioned into equal sum subsets.

 

Constraints:

  • 1 <= nums.length <= 200
  • 1 <= nums[i] <= 100

Actually, this is a 0/1 knapsack problem, for each number, we can pick it or not. Let us assume dp[i][j] means whether the specific sum j can be gotten from the first i numbers. If we can pick such a series of numbers from 0-i whose sum is j, dp[i][j] is true, otherwise it is false.

Base case: dp[0][0] is true; (zero number consists of sum 0 is true)

Transition function: For each number, if we don't pick it, dp[i][j] = dp[i-1][j], which means if the first i-1 elements has made it to j, dp[i][j] would also make it to j (we can just ignore nums[i]). If we pick nums[i]. dp[i][j] = dp[i-1][j-nums[i]], which represents that j is composed of the current value nums[i] and the remaining composed of other previous numbers. Thus, the transition function is dp[i][j] = dp[i-1][j] || dp[i-1][j-nums[i]].


class Solution {
public:
    bool canPartition(vector<int>& nums) {
        int sum=0;
        
        for(auto x:nums)
            sum+=x;
        
        if(sum%2)
            return false;
        vector<bool> dp((sum/2)+1,0);
        sort(nums.begin(),nums.end());
        int n=nums.size();
        dp[0]=true;
        for(int i=0;i<n;++i)
        {
          for(int j=sum/2;j>=0;--j)
          {
              if(j>=nums[i])
              {
                  dp[j]=dp[j]|dp[j-nums[i]];
              }
          }
        }
        return dp[sum/2];
    }
};