Given the root of the tree, you need to perform AVL tree deletion operations on it. You need to complete the method delelteNode which takes 2 arguments the first is the root of the tree and the second is the value of the node to be deleted. The function should return the root of the modified tree. - Codeprg

Breaking

programing News Travel Computer Engineering Science Blogging Earning

Sunday, 19 July 2020

Given the root of the tree, you need to perform AVL tree deletion operations on it. You need to complete the method delelteNode which takes 2 arguments the first is the root of the tree and the second is the value of the node to be deleted. The function should return the root of the modified tree.



Given the root of the tree, you need to perform AVL tree deletion operations on it. You need to complete the method delelteNode which takes 2 arguments the first is the root of the tree and the second is the value of the node to be deleted. The function should return the root of the modified tree.


Input:
The first line of input contains an integer T denoting the number of test cases. Then T test cases follow. Each test case contains 3 lines. The first line of each test case contains a string representing the tree as described below: 

The values in the string are in the order of level order traversal of the tree where, numbers denote node values, and a character “N” denotes NULL child.

For example:
 
For the above tree, the string will be: 1 2 3 N N 4 6 N 5 N N 7 N
Note: Assume that all input BSTs are balanced.

The second line of test case holds an integer n denoting the number of nodes to be deleted. Finally, the last line of test case holds the n space-separated integer values to be deleted from the tree.

nput:
3
4 2 6 1 3 5 7
4
4 1 3 6
2 1 3 N N N 4
4
1 2 3 4
61 40 94 19 44 N 95
2
44 95
Output:
2 5 7
null
19 40 61 94
// { Driver Code Starts
//

#include <bits/stdc++.h>
using namespace std;

struct Node
{
int data, height;
Node *left, *right;
Node(int x)
{
data = x;
height = 1;
left = right = NULL;
}
};

int setHeights(Node* n)
{
if(!n) return 0;
n->height = 1 + max( setHeights(n->left) , setHeights(n->right) );
return n->height;
}

Node* buildTree(string str)
{   
    // Corner Case
    if(str.length() == 0 || str[0] == 'N')
            return NULL;
    
    // Creating vector of strings from input 
    // string after spliting by space
    vector<string> ip;
    
    istringstream iss(str);
    for(string str; iss >> str; )
        ip.push_back(str);
        
    // Create the root of the tree
    Node* root = new Node(stoi(ip[0]));
        
    // Push the root to the queue
    queue<Node*> queue;
    queue.push(root);
        
    // Starting from the second element
    int i = 1;
    while(!queue.empty() && i < ip.size()) {
            
        // Get and remove the front of the queue
        Node* currNode = queue.front();
        queue.pop();
            
        // Get the current node's value from the string
        string currVal = ip[i];
            
        // If the left child is not null
        if(currVal != "N") {
                
            // Create the left child for the current node
            currNode->left = new Node(stoi(currVal));
                
            // Push it to the queue
            queue.push(currNode->left);
        }
            
        // For the right child
        i++;
        if(i >= ip.size())
            break;
        currVal = ip[i];
            
        // If the right child is not null
        if(currVal != "N") {
                
            // Create the right child for the current node
            currNode->right = new Node(stoi(currVal));
                
            // Push it to the queue
            queue.push(currNode->right);
        }
        i++;
    }
    
    setHeights(root);
    return root;
}

bool isBST(Node *n, int lower, int upper)
{
if(!n) return 1;
if( n->data <= lower || n->data >= upper ) return 0;
return isBST(n->left, lower, n->data) && isBST(n->right, n->data, upper) ;
}

pair<int,bool> isBalanced(Node* n)
{
if(!n) return pair<int,bool> (0,1);

pair<int,bool> l = isBalanced(n->left);
pair<int,bool> r = isBalanced(n->right);

if( abs(l.first - r.first) > 1 ) return pair<int,bool> (0,0);

return pair<int,bool> ( 1 + max(l.first , r.first) , l.second && r.second );
}

bool isBalancedBST(Node* root)
{
if( !isBST(root, INT_MIN, INT_MAX) )
cout<< "BST voilated, inorder traversal : ";

else if ( ! isBalanced(root).second )
cout<< "Unbalanced BST, inorder traversal : ";

else return 1;
return 0;
}

void printInorder(Node* n)
{
if(!n) return;
printInorder(n->left);
cout<< n->data << " ";
printInorder(n->right);
}

struct Node* deleteNode(struct Node* root, int data);

int main()
{
int t;
cin>>t;
getchar();

while(t--)
{
string s;
getline(cin,s);
Node* root = buildTree(s);
        
int n;
cin>> n;
int ip[n];
for(int i=0; i<n; i++)
cin>> ip[i];
        
for(int i=0; i<n; i++)
{
root = deleteNode(root, ip[i]);
if( !isBalancedBST(root) )
break;
}
        
if(root==NULL)
cout<<"null";
else
printInorder(root);
cout<< endl;
        
getline(cin,s); // to deal with newline char
}
return 1;
}
// } Driver Code Ends


/* Node is as follows:

struct Node
{
int data, height;
Node *left, *right;
Node(int x)
{
data = x;
height = 1;
left = right = NULL;
}
};

*/
void inordered(Node *root,vector<int> &v,int del)
{
    if(root)
    {
//call inordred function which sort number
//pushing only other than del element
    inordered(root->left,v,del);
    if(root->data!=del)
    v.push_back(root->data);
    inordered(root->right,v,del);
    }             
    
}

Node *BuildTree(vector<int> &v,int s,int e)
{
    if(s>e)
    return NULL ;
//mid value provide root of tree
    int mid=(s+e)/2;
    Node *root=new Node(v[mid]);
// now call left part of vector to build left subtree
    root->left=BuildTree(v,s,mid-1);
//now call right part of vector to build right subtree
    root->right=BuildTree(v,mid+1,e);
    return root;
}

Node* deleteNode(Node* root, int data)
{
    //add code here,
    
    if(root==NULL)return NULL ;
        vector<int> v;
//pushing all element execept equal to data element
           inordered(root,v,data);
//Build Tree using   sorted vector which easy to built it.  
      return BuildTree(v,0,v.size()-1);
}