Sliding Window Maximum
Given an array num, there is a sliding window of size k which is moving from the very left of the array to the very right. You can only see the k numbers in the window. Each time the sliding window moves right by one position. Return the max sliding window.
Follow up:
Could you solve it in linear time?
Example:
Input: nums =[1,3,-1,-3,5,3,6,7]
, and k = 3 Output:[3,3,5,5,6,7] Explanation:
Window position Max --------------- ----- [1 3 -1] -3 5 3 6 7 3 1 [3 -1 -3] 5 3 6 7 3 1 3 [-1 -3 5] 3 6 7 5 1 3 -1 [-3 5 3] 6 7 5 1 3 -1 -3 [5 3 6] 7 6 1 3 -1 -3 5 [3 6 7] 7
Constraints:
1 <= nums.length <= 10^5
-10^4 <= nums[i] <= 10^4
1 <= k <= nums.length
class Solution {
public:
vector<int> maxSlidingWindow(vector<int>& nums, int k) {
int n=nums.size();
if(n<k) return {};
deque<int> dq;
vector<int> ans;
for (int i=0; i<nums.size(); i++)
{
if (!dq.empty() && dq.front() == i-k) dq.pop_front();
while (!dq.empty() && nums[dq.back()] < nums[i])
dq.pop_back();
dq.push_back(i);
if (i>=k-1) ans.push_back(nums[dq.front()]);
}
return ans;
}
};