Arranging Coins
You have a total of n coins that you want to form in a staircase shape, where every k-th row must have exactly k coins.
Given n, find the total number of full staircase rows that can be formed.
n is a non-negative integer and fits within the range of a 32-bit signed integer.
Example 1:
n = 5 The coins can form the following rows: ¤ ¤ ¤ ¤ ¤ Because the 3rd row is incomplete, we return 2.
Example 2:
n = 8 The coins can form the following rows: ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ Because the 4th row is incomplete, we return 3.
class Solution {
public:
bool canbe(long long int l,int n)
{
long long int k=(l*(l+1))/2 ;
return k<=n;
}
int arrangeCoins(int n) {
// int i=1,cnt=0;
// while(i<=n)
// {
// n-=i;
// ++i;
// }
// return i-1;
if(n==1||n==0)return n;
int l=1,h=5000000,cnt=0;
while(l<=h)
{
long long mid=(l+h)/2;
if(canbe(mid,n))
{
cnt=mid,l=mid+1;
}else{
h=mid-1;
}
}
return cnt;
}
};