Given an undirected graph and an integer M. The task is to determine if the graph can be colored with at most M colors such that no two adjacent vertices of the graph are colored with the same color. Here coloring of a graph means the assignment of colors to all vertices. Print 1 if it is possible to colour vertices and 0 otherwise. - Codeprg

Breaking

programing News Travel Computer Engineering Science Blogging Earning

Sunday, 12 July 2020

Given an undirected graph and an integer M. The task is to determine if the graph can be colored with at most M colors such that no two adjacent vertices of the graph are colored with the same color. Here coloring of a graph means the assignment of colors to all vertices. Print 1 if it is possible to colour vertices and 0 otherwise.

The task is to determine if the graph can be colored with at most M colors such that no two adjacent vertices of the graph are colored with the same color.

Given an undirected graph and an integer 
M., The task is to determine if the graph can be colored with at most M colors such that no two adjacent vertices of the graph are colored with the same color. Here coloring of a graph means the assignment of colors to all vertices. Print 1 if it is possible to color vertices and 0, otherwise.

You don't need to read input or print anything. Your task is to complete the function graph coloring() which takes the 2d-array graph[], the number of colors, and the number of nodes as inputs and returns 1 if the answer exists otherwise 0.

Note: In the given 2d-array graph[], if there is an edge between vertex X and vertex Y graph[] will contain 1 at graph[X-1][Y-1], else 0.

Example:
Input :
2
4
3
5
1 2 2 3 3 4 4 1 1 3
3

2
3
1 2 2 3 1 3

Output:
1
0

//bool graphColoring(bool graph[101][101], int m, int V) {

 // vector<int> q[V];

    // for(int i=0;i<V;++i)

    // {

    //     for(int j=0;j<V;++j)

    //     {

    //         if(graph[i][j]==1)

    //         {

    //             q[i].push_back(j);

    //             q[j].push_back(i);

    //             graph[i][j]=0;

    //             graph[j][i]=0;

    //         }

    //     }

    // }

    

    // vector<int> v(V,-1);

    // v[0]=1;

    //     for(int k=1;k<V;++k)

    //     {

    //       for(int i=1;i<=m;++i) 

    //       {

    //           int f=1;

    //           for(int j=0;j<q[k].size();++j)

    //           {

    //               if(v[q[k][j]]==i)

    //               {

    //                   f=0;

    //                   break;

    //               }

    //           }

    //           if(f)

    //           {

    //           v[k]=i;

    //           break;

    //           }

    //       }

    //     //   if(v[k]==-1)

    //     //   return false;

    //     cout<<v[k]<<" ";

    // } 

    //   return true;

//}

/ { Driver Code Starts#include <bits/stdc++.h>

using namespace std;

// } Driver Code Ends

bool check(bool graph[101][101], int V, vector < int > & color, int j, int colour) {

    for (int i = 0; i < V; ++i) {

        if (graph[j][i] == 1 && color[i] == colour) return false;

    }

    return true;

}

bool graphtest(bool graph[101][101], int m, int V, vector < int > & color, int index) {

    if (V == index)

        return true;

    for (int i = 0; i < m; ++i) {

        if (check(graph, V, color, index, i)) {

            color[index] = i;

            if (graphtest(graph, m, V, color, index + 1))

                return true;

            color[index] = -1;

        }

    }

    return false;

}

bool graphColoring(bool graph[101][101], int m, int V) {

    // your code here

    vector < int > color(V, -1);

    return graphtest(graph, m, V, color, 0);

}

// { Driver Code Starts.

int main() {

    int t;

    cin >> t;

    while (t--) {

        int n, m, e;

        cin >> n >> m >> e;

        int i;

        bool graph[101][101];

        for (i = 0; i < n; i++) {

            memset(graph[i], 0, sizeof(graph[i]));

        }

        for (i = 0; i < e; i++) {

            int a, b;

            cin >> a >> b;

            graph[a - 1][b - 1] = 1;

            graph[b - 1][a - 1] = 1;

        }

        cout << graphColoring(graph, m, n) << endl;

    }

    return 0;

}

// } Driver Code Ends